

amplitudes. The time interval for the observations until complete disappearance of the signal for H_β varied from several minutes to several hours. The K_D values related solely to the pyrrole β -carbon atom; in all cases, the NH proton exchanged instantaneously.

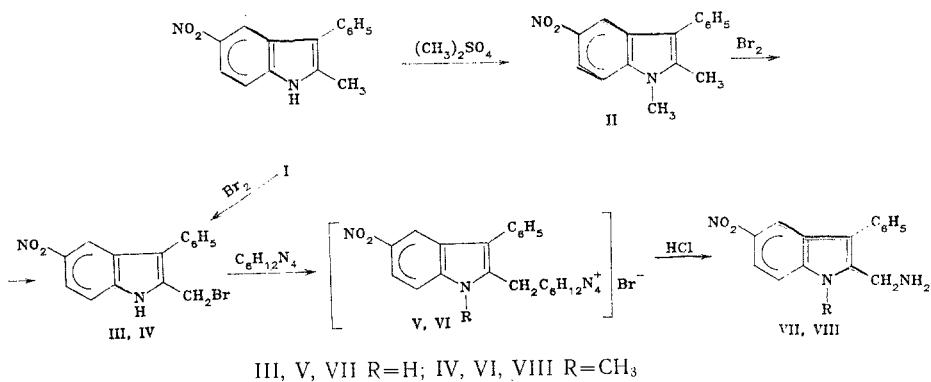
LITERATURE CITED

1. A. M. Vasil'ev and T. A. Babushkina, Khim. Geterotsikl. Soedin., No. 11, 1508 (1979).
2. W. J. Houlihan, Indoles, Wiley, New York (1972).
3. R. J. Sundberg, Organic Chemistry. 18. The Chemistry of Indoles, Academic Press, New York (1970).
4. L. P. Belozerskaya, G. S. Denisov, and I. F. Tupitsyn, Teor. Éksp. Khim., 6, 408 (1970).
5. O. A. Yuzhakova, L. N. Kurkovskaya, N. N. Shapet'ko, V. K. Potapov, and A. I. Shatenshtein, Teor. Éksp. Khim., 7, 62 (1971).
6. O. A. Yuzhakova, L. N. Kurkovskaya, and N. N. Shapet'ko, Teor. Éksp. Khim., 11, 681 (1975).
7. V. P. Shabunova, Zh. F. Sergeeva, R. N. Akhvlediani, A. M. Vasil'ev, N. V. Gorelova, and N. N. Suvorov, Khim.-farm. Zh., No. 6, 53 (1978).
8. A. P. Gryaznov, Candidate's Dissertation, Moscow (1977).
9. V. P. Shabunova, R. N. Akhvlediani, A. M. Vasil'ev, and N. N. Suvorov, paper deposited at VINITI, No. 2646-78-dep., 8.8.78; Ref. Zh. Khim., 3Zh 271. Dep. 1978.
10. J. M. Bobbit, A. R. Katritzky, P. D. Kennewell, and M. Snarey, J. Chem. Soc., No. 5, 550 (1968).
11. T. A. Babushkina, A. M. Vasil'ev, L. B. Shagalov, V. N. Eraksina, T. A. Tkachenko, and N. N. Suvorov, Zh. Org. Khim., 11, 864 (1975).
12. N. M. Sergeev, NMR Spectroscopy [in Russian], Izd. MGU, Moscow (1981), p. 90.
13. P. G. Gassman and D. C. Heckert, J. Org. Chem., 30, 2859 (1965).

A NEW APPROACH TO THE SYNTHESIS OF 2-AMINOMETHYL-3-PHENYL-5-NITROINDOLE

E. S. Krichevskii, O. B. Romanova,
and A. N. Grinev

UDC 547.752'753.07:543.422

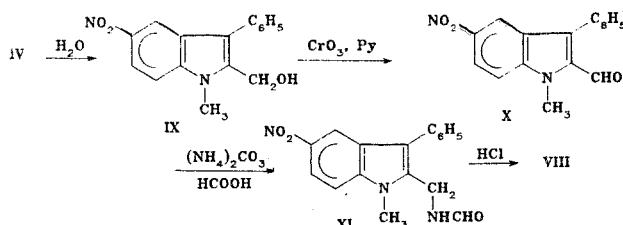

Bromination of 2-methyl-3-phenyl-5-nitroindoles has given previously unknown 2-bromoethyl-3-phenyl-5-nitroindoles, which were converted by the Delepine reaction into 2-aminomethyl-3-phenyl-5-nitroindoles. One of these (1-methyl-2-aminomethyl-3-phenyl-5-nitroindole) was also obtained by reductive amination of 1-methyl-2-formyl-3-phenyl-5-nitroindole by the Leuckart-Wallach reaction.

This work was carried out in view of interest in the synthesis of the tranquilizers nitrazepam [1] and hypnotic [2]. The key compounds in the synthesis of these drugs are 2-aminomethyl-3-phenyl-5-nitroindoles. These compounds have hitherto been synthesized from 3-phenyl-5-nitroindole-2-carbonitriles by selective reduction of the nitro group with sodium borohydride in the presence of boron trifluoride etherate or with a mixture of diborane and sodium borohydride in tetrahydrofuran [3-7].

We here describe a new, more rational synthesis of 2-aminomethyl-3-phenyl-5-nitroindoles (see scheme on following page).

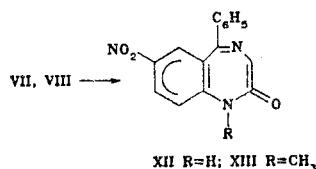
The starting material was the known 2-methyl-3-phenyl-5-nitroindole (I) [8, 9], obtained in high yield by a method improved by the authors. Methylation of (I) with dimethyl sulfate afforded 1,2-dimethyl-3-phenyl-5-nitroindole (II). Bromination of (I) and (II) gave the 2-bromomethyl derivatives (III) and (IV). The bromination was carried out with dioxane dibromide, N-bromosuccinimide, or bromine under various conditions. The highest

S. Ordzhonikidze All-Union Scientific-Research Institute of Pharmaceutical Chemistry, Moscow 119021. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 12, pp. 1648-1651, December, 1983. Original article submitted February 9, 1983; revision submitted July 22, 1983.


III, V, VII R=H; IV, VI, VIII R=CH₃

yields of the 2-bromomethyl compounds (III) and (IV) were obtained by bromination with bromine in glacial acetic acid or dichloroethane at 20°C under illumination.

In contrast to the PMR spectrum of the starting material (II), the spectrum of (IV) did not contain a signal for the 2-CH₃ group at 2.46 ppm, but a new singlet signal for the protons of the CH₂Br group was seen at 4.69 ppm.


The mass spectrum of the 1-methyl-2-bromomethyl compound (IV) contained a molecular ion peak with m/z 344/346. The strongest peak corresponded to a fragment with m/z 265 (M - Br), since elimination of bromine results in the formation of a stable ion.

Reaction of (III) and (IV) with urotropin gave the urotropin complexes (V) and (VI), which on acid hydrolysis afforded 2-aminomethyl-3-phenyl-5-nitroindole (VII) and 1-methyl-2-aminomethyl-3-phenyl-5-nitroindole (VIII) [11]. The spectral characteristics of (VII) and (VIII) agreed with those given in the literature [3, 6]. Compound (VIII) was also obtained by a different method:

Hydrolysis of (IV) gave 1-methyl-2-hydroxymethyl-3-phenyl-5-nitroindole (IX). The presence in the IR spectrum of (IX) of absorption for stretching vibrations of the OH group at 3320-3480 cm^{-1} confirmed its structure. Oxidation of (IX) with chromic anhydride in pyridine yielded 1-methyl-2-formyl-3-phenyl-5-nitroindole (X), the IR spectrum of which showed strong absorption at 1670 cm^{-1} corresponding to carbonyl stretching vibrations in 2-formylindoles [12]. The Leuckart-Wallach reaction with (X) gave 1-methyl-2-formylamino-methyl-3-phenyl-5-nitroindole (XI), the structure of which was confirmed by the presence of characteristic absorption at 3220 cm^{-1} (NH) which was absent from the spectrum of the starting material (X). Acid hydrolysis of (XI) afforded the 1-methyl-2-aminomethyl compound (VIII) [13]. A mixed melting point with a sample obtained earlier in this investigation showed no depression.

On treatment with chromic acid as described in [3], the 2-aminomethyl derivatives (VII) and (VIII) were converted into the previously-described 7-nitro-2,3-dihydro-5-phenyl-1H-1,4-benzodiazepin-2-one (XII) (nitrazepam) and its N-methyl analog (hypnnone).

EXPERIMENTAL

The IR spectra of the compounds prepared were obtained on Perkin-Elmer and UR-10

spectrometers in vaseline oil, UV spectra on a Hitachi ERS-3T spectrometer in methanol, and PMR spectra on Varian XL 100-A-12 and Jeol JNM-100 instruments, internal standard TMS, solvent as given in each instance. Mass spectra were obtained on an LK B-9000 chromatograph-mass spectrometer with direct introduction of the sample into the ion source, ionizing electron energy 70 eV, and source temperature 150°C. The purities of the compounds obtained and the course of the reactions were followed by TLC on Silufol-254 plates in the systems benzene, benzene-methanol (9:1), and nitromethane-ethyl acetate (85:15). Visualization was in UV light.

2-Methyl-3-phenyl-5-nitroindole (I). To a suspension of 13.4 (0.05 mole) of benzyl methyl ketone p-nitrophenylhydrazone in 20 ml of 98% acetic acid, heated to 80°C, was added with stirring 20 ml of conc. HCl. The mixture was stirred for 2 h at 80°C, cooled to 10°C, and kept for 2 h. The solid was filtered off, washed with cold acetic acid (3 x 30 ml) and water, and dried to give 8.82 g (70%), mp 197-198°C (from dichloroethane). The melting point agreed with the literature value [9].

1,2-Dimethyl-3-phenyl-5-nitroindole (II). To a solution of 2.52 g (0.01 mole) of the indole (I) in 50 ml of acetone was added at 20°C with stirring a 50% aqueous solution of KOH (2.3 g) and 1.9 g (0.017 mole) of dimethyl sulfate. The mixture was stirred for 1 h at 20°C, then poured into water, the solid filtered off, washed with water until neutral, and dried to give 2.16 g (82%), mp 169-170°C (from methanol). UV spectrum, λ_{max} (log ε): 276 (4.31), 322 nm (3.87). Found, %: C 71.9; H 5.3; N 10.5. $\text{C}_{16}\text{H}_{14}\text{N}_2\text{O}_2$. Calculated, %: C 72.1; H 5.3; N 10.5.

2-Bromomethyl-3-phenyl-5-nitroindole (III). To a suspension of 50.4 g (0.2 mole) of (I) in 800 ml of dry dichloroethane was added with stirring under illumination by a 150-W lamp over a period of 1 h, 10.4 g (0.02 mole) of bromine in 70 ml of dichloroethane. The mixture was stirred for 1 h, and the solid which separated was filtered off and dried to give 56.3 g (85%), mp 236-237°C (from dichloroethane). Found, %: C 54.0; H 3.3; Br 24.0; N 8.3. $\text{C}_{16}\text{H}_{11}\text{BrN}_2\text{O}_2$. Calculated, %: C 54.4; H 3.3; Br 24.1; N 8.3.

1-Methyl-2-bromomethyl-3-phenyl-5-nitroindole (IV). Synthesized as for (III), (IV) was obtained in 95% yield, mp 212-213°C (from benzene), UV spectrum (in dioxane), λ_{max} (log ε): 285 (4.38), 330 nm (3.95). PMR spectrum (CDCl_3): 3.91 (s, 3H, $\text{N}-\text{CH}_3$); 4.69 (s, 2H, CH_2Br); 7.37 (1H, 7-H, J_0 = 9 Hz); 7.53 (m, 5H, arom.); 8.18 (q, 1H, J_0 = 9 Hz, J_m = 2 Hz, 6-H); 8.59 ppm (d, J = 2 Hz, 4-H). Found, %: C 55.8; H 3.5; Br 23.0; N 8.1. $\text{C}_{16}\text{H}_{13}\text{BrN}_2\text{O}_2$. Calculated, %: C 55.7; H 3.3; Br 23.1; N 8.1; M 345.2.

2-Aminomethyl-3-phenyl-5-nitroindole (VII). A solution of 7 g (0.05 mole) of urotropin and 16.5 g (0.05 mole) of the bromide (III) in 200 ml of chloroform was boiled for 6 h, then kept for 6 h at 20°C. The urotropin complex was treated with 100 ml of ethanol and 35 ml of conc. HCl, and the mixture was boiled for 3 h. After cooling, the solid which separated was filtered off and dried to give 14.3 g (95%) of (VII) hydrochloride, mp 283-285°C (decomp., from alcohol). Found, %: C 59.6; H 4.8; Cl 11.4; N 14.0. $\text{C}_{15}\text{H}_{14}\text{ClN}_3\text{O}_2$. Calculated, %: C 59.3; H 4.6; Cl 11.7; N 13.8.

A suspension of (VII) hydrochloride in chloroform was basified with 40% sodium hydroxide solution, and stirred at 20°C for 4 h. The chloroform layer was separated, washed with water, dried over MgSO_4 , and evaporated to give the free base of (VII), mp 207-207.5°C (from alcohol), literature value [7], 182-184°C. IR spectrum: 3360, 3300 cm^{-1} (NH_2); UV spectrum, λ_{max} (log ε): 270 (4.4), 330 nm (3.92); PMR spectrum ($\text{DMSO} + \text{CCl}_4$): 4.32 (s, 2H, 2- CH_2NH_2); 7.25-7.65 (m, 6H, 5 arom. and 7-H); 8.94 (s, 2H, NH_2); 8.03 (br. d., 1H, 6-H); 8.41 (s, 1H, 4-H); 12.52 ppm (s, 1H, NH). Found, %: C 67.4; H 5.2; N 15.9. $\text{C}_{15}\text{H}_{13}\text{N}_3\text{O}_2$. Calculated, %: C 67.4; H 4.9; N 15.7.

1-Methyl-2-aminomethyl-3-phenyl-5-nitroindole (VIII). As in the preceding experiment, from 12 g (0.035 mole) of (IV), 4.9 g urotropin, 150 ml of chloroform, 25 ml of conc. HCl, and 100 ml of alcohol there was obtained 10.5 g (95%) of (VIII) hydrochloride, mp 279-282°C (from DMF) (literature value [3], 278-280°C).

The free base of (VIII) was isolated as described above, mp 159-160°C (from alcohol). IR spectrum: 3380, 3100 cm^{-1} (NH_2). UV spectrum, λ_{max} (log ε): shoulder 266 (4.35), 280 (4.45), 336 nm (3.95); PMR spectrum (CDCl_3): 1.34 (s, 2H, NH_2); 3.92 (s, 3H, $\text{N}-\text{CH}_3$); 4.06 (s, 2H, $-\text{CH}_2-$); 7.38 (d, 1H, 7-H, J_0 = 9 Hz); 7.42 (s, 5H, arom.); 8.09 ppm (q, 1H, J_0 = 9 Hz, 4H, J_m = 2 Hz). Found, %: C 68.5; H 5.3; N 14.9. $\text{C}_{16}\text{H}_{15}\text{N}_3\text{O}_2$. Calculated, %: C 68.3; H 5.4; N 14.9.

1-Methyl-2-hydroxymethyl-3-phenyl-5-nitroindole (IX). A mixture of 3.45 g (0.01 mole) of (II), 30 ml of dioxane, and 15 ml of water was boiled for 4 h. The mixture was poured into 100 ml of water, and the solid filtered off, washed with water, and dried to give 2.12 g (73%), mp 178-179°C (from dioxane). IR spectrum: 3330 cm^{-1} (OH). UV spectrum (in dioxane), λ_{max} (log ϵ): shoulder 226 (4.3), 282 (4.32), 336 nm (3.9). Found, %: C 68.0; H 4.9; N 9.9. $\text{C}_{16}\text{H}_{14}\text{N}_2\text{O}_3$. Calculated, %: C 68.2; H 4.9; N 9.9.

1-Methyl-2-formyl-3-phenyl-5-nitroindole (X). A mixture of 160 ml of pyridine and 8 g of chromic anhydride was stirred for 10 min, a solution of 10 g (0.036 mole) of (IV) in 50 ml of pyridine was added, and the mixture kept for 12 h at 20°C. The mixture was then treated with 500 ml of water, and the solid filtered off, washed with water, and dried. The solid was chromatographed on 50 g of silica gel, eluent chloroform. Yield 7 g (70%), mp 183.5-184.5°C (from acetone-alcohol). IR spectrum: 1670 cm^{-1} (CO). Found, %: C 68.4; H 4.4; N 9.8. $\text{C}_{16}\text{H}_{12}\text{N}_2\text{O}_3$. Calculated, %: C 68.5; H 4.3; N 10.0.

1-Methyl-2-formylaminomethyl-3-phenyl-5-nitroindole (XI). In a flask fitted with a reflux condenser was placed 5.5 g (0.058 mole) of ammonium carbonate, and 10 ml (0.2 mole) of 85% formic acid was added slowly through the condenser. The condenser was then set for distillation, and the mixture was slowly heated to 160°C. At this temperature, excess formic acid distilled over. To the resulting ammonium formate was added 4.2 g (0.015 mole) of the aldehyde (X), and heating was continued, whereupon the mixture became homogeneous and the temperature rose to 175-180°C. The mixture was kept at this temperature for 7 h, cooled, and diluted with twice its volume of water to dissolve unreacted ammonium formate. The solid was filtered off, washed with water, and dried to give 1.74 g (37%), mp 187-188°C (from alcohol). IR spectrum: 3220 (NH), 1660 cm^{-1} (CO). UV spectrum, λ_{max} (log ϵ): 260 (4.2), 270 (4.22), 3.36 nm (3.92). Found, %: C 66.0; H 4.9; N 13.6. $\text{C}_{17}\text{H}_{15}\text{N}_3\text{O}_3$. Calculated, %: C 66.3; H 4.7; N 13.4.

1-Methyl-2-aminomethyl-3-phenyl-5-nitroindole (VIII). A solution of 1.85 g (0.006 mole) of (VI) in 12 ml of conc. HCl and 12 ml of dioxane was boiled for 2 h, cooled, and the solid filtered off and dried to give 1.45 g (76%) of (VIII) hydrochloride, mp 279-180°C (decomp., from DMF). A mixed melting point with a sample obtained earlier in this work gave no depression.

LITERATURE CITED

1. M. D. Mashkovskii, Drugs [in Russian], Meditsina, Moscow (1977), Vol. 1, p. 34.
2. S. Sakai, S. Kitagawa, and H. Yamamoto, *Arzneim. Forsch.*, 22, 534 (1972).
3. S. Inaba, K. Ishizumi, K. Mori, and H. Yamamoto, *Chem. Pharm. Bull.*, 19, 722 (1971).
4. H. Yamamoto, S. Inaba, T. Hirohashi, T. Okamoto, K. Ishizumi, M. Yamamoto, I. Maruyama, K. Mori, and T. Kobayashi, Patent No. 1,811,830 (BRD); *Chem. Abstr.*, 75, 129844 (1971).
5. H. Yamamoto, S. Inaba, T. Hirohashi, T. Okamoto, K. Ishizumi, M. Yamamoto, I. Maruyama, K. Morik, and T. Kobayashi, Patent No. 1,817,761 (BRD); *Chem. Abstr.*, 74, 3671 (1971).
6. H. Yamamoto, S. Inaba, T. Okamoto, T. Hirohashi, K. Ishizumi, M. Yamamoto, I. Maruyama, K. Mori, and T. Kobayashi, Patent No. 1,806,106 (BRD); *Chem. Abstr.*, 71, 70659 (1969).
7. M. Yamamoto, S. Inaba, T. Hirohashi, K. Ishiguro, I. Maruyama, and K. Morik, Jap. Patent No. 7,102,016; *Chem. Abstr.*, 74, 87826 (1971).
8. C. M. Atkinson, J. C. E. Simpson, and A. Taylor, *J. Chem. Soc.*, 1, 165 (1954).
9. A. R. Frasca, *An. Asoc. Quim. Arg.*, 50, 162 (1962).
10. É. S. Krichevskii, V. I. Shvedov, L. B. Altukhova, and A. N. Grinev, Inventor's Certificate No. 548028 (USSR); *Byull. Izobret.*, No. 37, 268 (1982).
11. É. S. Krichevskii, V. I. Shvedov, L. B. Altukhova, and A. N. Grinev, Inventor's Certificate No. 540,457 (USSR); *Byull. Izobret.*, No. 37, 269 (1982).
12. F. Millich and E. I. Becker, *J. Org. Chem.*, 23, 1096 (1958).
13. É. S. Krichevskii, V. I. Shvedov, L. B. Altukhova, and A. N. Grinev, Inventor's Certificate No. 590,948 (USSR); *Byull. Izobret.*, No. 37, 268 (1982).